
Summer 2023 Computer Science GCSE OCR

Paper 1 (01)

 PG
online
pages:

1.1 Systems

Architecture

1.1.1
Architecture
of the CPU

• The purpose of the CPU
 - What actions occur at each stage of the fetch-execute cycle
 - The role/purpose of each component and what it manages,
stores, or controls during the fetch-execute cycle

• Common CPU components and their function:
-ALU (Arithmetic Logic Unit), CU (Control Unit), cache, registers

• Von Neumann architecture
-MAR (Memory Address Register), MDR (Memory Data Register),
program counter, accumulator.

2-3

1.1.2
CPU
performance

• How common characteristics of CPU’s affect their performance:
 -Clock speed
 -Cache size
 -Number of cores

4

1.1.3
Embedded
systems

• The purpose and characteristics of embedded systems

• Examples of embedded systems.

4-5

1.2 Memory
and storage

 1.2.1
Primary
storage
(Memory)

• The need for primary storage.

• The difference between RAM and ROM.

• The purpose of ROM in a computer system.

• The purpose of RAM in a computer system.

• Virtual memory- The role/purpose of each component and what it
manages, stores, or controls during the fetch-execute cycle.

6-7

1.2.2
Secondary
storage

• The need for secondary storage
• Common types of storage:
 -optical, magnetic, solid state
• Suitable storage devices and storage media for a given application.
• The advantages and disadvantages of different storage devices and
storage media relating to these characteristics:
 -capacity
 -speed
 -portability
 -durability
 -reliability
 -cost

8,9

 1.2.3
Units

 Why data must be stored in binary format.

• Calculate required storage capacity for a given set of files.

• Calculate file sizes of sound, images and text files.

• Sound file size = sample rate x duration (s) x bit depth image file
size = colour depth x image height (px) x image width (px)

• text file size = bits per character x number of characters.

11

1.2.4
Data Storage

Numbers:
• How to convert positive denary whole numbers to binary numbers
(up to and including 8 bits) and vice versa.
• How to add two binary integers together (up to and including 8
bits) and explain overflow errors which may occur.
• How to convert positive denary whole numbers into 2-digit
hexadecimal numbers and vice versa.
• How to convert binary integers to their hexadecimal equivalents
and vice versa

12- 20

• Binary shifts.
Characters:

• The use of binary codes to represent characters.

• The term ‘character set’.

• The relationship between the number of bits per character in a
character set, and the number of characters which can be
represented, e.g.: ASCII, Unicode.

Images:

• How an image is represented as a series of pixels, represented in
binary.

• Metadata.

• The effect of colour depth and resolution on: The quality of the
image, the size of an image file.

Sound:

• How sound can be sampled and stored in digital form.

• The effect of sample rate, duration and bit depth on: The playback
quality, The size of a sound file.

1.3 Computer
Networks,
connections
and protocols

1.2.5
Compression

• The need for compression.
• Types of compression: Lossy, Lossless.
• Advantages and disadvantages of each type of compression
• Effects on the file for each type of compression.

21

1.3.1
Networks and
topologies

• Types of networks: LAN (Local Area Network), WAN (Wide Area
Network)

• Factors that affect the performance of networks.

• The different roles of computers in a client-server and a peer-to
peer network.

• The hardware needed to connect stand-alone computers into a
Local Area Network: Wireless access points, Routers, Switches, NIC
(Network Interface Controller/Card), Transmission media.

• The Internet as a worldwide collection of computer network s:
DNS (Domain Name Server), Hosting, The Cloud, Web servers and
clients

• Star and Mesh network topologies- advantages/disadvantages.

• Modes of connection: Wired (Ethernet), Wireless (Wi-Fi,

Bluetooth)

• Encryption

• IP addressing and MAC addressing

23-29

1.3.2
Wired and
wireless
networks,
protocols and
layers

• Modes of connection: Wired (Ethernet), Wireless (Wi-Fi,
Bluetooth)

• Encryption

• IP addressing and MAC addressing

• The principle of a standard to provide rules for areas of computing.

• Common protocols including: TCP/IP (Transmission Control
Protocol/Internet Protocol), HTTP (Hyper Text Transfer Protocol) ,
HTTPS (Hyper Text Transfer Protocol Secure) , FTP (File Transfer
Protocol), POP (Post Office Protocol) ,, IMAP (Internet Message
Access Protocol, SMTP (Simple Mail Transfer Protocol)

• How layers are used in protocols, and the benefits of using layers;
for a teaching example, please refer to the 4-layer TCP/IP model.

30-32

1.4 Network
Security

1.4.1 Threats
to computer
systems and
networks

• Forms of attack: Malware, Social engineering, e.g., phishing,
people as the ‘weak point’, Brute-force attacks, Denial of service
attacks, Data interception and theft, The concept of SQL injection.
• Common prevention methods: Penetration testing, Anti-malware
software, Firewalls, User access levels, Passwords, Encryption, Physical
security.

34

1.4.

Identifying
and
preventing
vulnerabilities

• Knowledge/principles of each prevention method: What each
prevention method may limit/prevent, how it limits the attack

35

1.5 Systems
software

1.5.1
Operating
systems

• What each function of an operating system does.
• Features of a user interface.
• Memory management, e.g., the transfer of data between memory,

and how this allows for multitasking.
• Understand that: Data is transferred between devices and the

processor; this process needs to be managed.
• User management functions, e.g.: Allocation of an account, Access

rights, Security, etc.
• What each function of an operating system does. Features of a
user interface.
• Memory management, e.g., the transfer of data between memory,
and how this allows for multitasking.
• Understand that: Data is transferred between devices and the
processor; this process needs to be managed.
• User management functions, e.g.: Allocation of an account, Access
rights, Security, etc.
• File management, and the key features, e.g.: Naming § Allocating
to folders, moving files, Saving, etc.

37

1.5.2
Utility
software

• The purpose and functionality of utility software.

• Utility system software: Encryption software, Defragmentation,
Data compression.

38

1.6 Ethical,
legal, cultural
and
environmental
impacts of
digital
technology

.6.1
Ethical, legal,
cultural and
environmental
impact

• Impacts of digital technology on wider society including Ethical
issues, Legal issues, Cultural issues, Environmental issues, Privacy
issues.

• Legislation relevant to Computer Science: The Data Protection Act
2018, Computer Misuse Act 1990, Copyright Designs and Patents
Act 1988, Software licences (i.e., open source and proprietary).

• Features of open source (providing access to the source code and
the ability to change the software).

• Features of proprietary (no access to the source code, purchased
commonly as off-the-shelf).

• Recommend a type of licence for a given scenario including
benefits and drawbacks.

40-44

Paper 2 (02)

 PG online
pages:

2.1 Algorithms
2.1.1
Computational
thinking

• Abstraction, Decomposition, Algorithmic thinking. 47

 2.1.2
Designing,
creating and
refining
algorithms

• Identify the inputs, processes, and outputs for a problem.

• Structure diagrams.

• Create, interpret, correct, complete, and refine algorithms
using: Flowcharts, Reference language/high-level
programming language.

 48-53

• Identify common errors.

• Trace tables. (How to use them, how many rows would be
needed)

 2.1.3
Searching and
sorting
algorithms

• Standard searching algorithms: Binary search, Linear search.
• Standard sorting algorithms: Bubble sort, Merge sort, Insertion
sort.

54-60

2.2
Programming
fundamentals

2.2.1
Programming
fundamentals

• The use of variables, constants, operators, inputs, outputs and
assignments.
• The use of the three basic programming constructs used to
control the flow of a program: Sequence, Selection, Iteration
(count- and condition-controlled loops).
• The common arithmetic operators.
• The common Boolean operators AND, OR and NOT.

61-77

 2.2.2 Data Types • The use of data types: Integer, Real, Boolean, Character and
string, Casting.

2.3 Producing
robust programs

2.2.3 Additional
programming
techniques

• The use of basic string manipulation.
• The use of basic file handling operations: Open, Read, Write,
Close.
• The use of records to store data.
• The use of SQL to search for data. (SELECT, FROM, WHERE).
• The use of arrays (or equivalent) when solving problems,
including both one-dimensional (1D) and two-dimensional arrays
(2D).
• How to use sub programs (functions and procedures) to
produce structured code.
• Random number generator.

2.3.1
Defensive design

• Defensive design considerations: Anticipating misuse,
Authentication.
• Input validation – how to deal with invalid data.
• Maintainability: Use of sub programs, Naming conventions,
Indentation, Commenting.

78

2.3.2
Testing

• The difference between testing modules of a program during
development and testing the program at the end of production.
 -Types of testing: Iterative, Final/terminal
• Identify syntax and logic errors
• Selecting and using suitable test data: Normal, Boundary,
Invalid/Erroneous
• Refining algorithms-making them more effective

80

2.4 Boolean
logic

2.41. Boolean
logic

• Simple logic diagrams using the operators AND, OR and NOT.
• Knowledge of Truth tables for each logic gate.
• Combining Boolean operators using AND, OR and NOT
• Applying logical operators in truth tables to solve problems.

82

2.5
Programming
languages and
integrated
development
environments

2.5.1 Languages • Characteristics and purpose of different levels of programming
language: High-level language, Low-level languages.
• The purpose of translators, need for translators.
• The characteristics of a compiler and an interpreter. The
differences, benefits and drawbacks of using a compiler or an
interpreter.

84

2.5.2
The integrated
development
environment
(IDE)

• Common tools and facilities available in an Integrated
Development Environment (IDE): Editors, Error diagnostics, Run-
time environment, Translators.
• How each of the tools and facilities listed can be used to help a
programmer develop a program.

85

